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XenonPy is a Python library that implements a comprehensive set of machine learning

tools for materials informatics. The current release (v0.3.7: 2019/8/7) is a prototype version,

which provides some limited modules. For details, see https://xenonpy.readthedocs.io.

XenonPy has the following features:

• An interface with public materials databases

• A library of materials descriptors (compositional/structural/molecular descriptors)

• The XenonPy.MDL pre-trained model library (v0.1.0b, 2019/7/31: more than 140,000

models with 35 properties of small molecules, polymers, and inorganic compounds, as

listed in Table 1 in the main text)

• Machine learning tools

• A transfer learning feature using pre-trained models in XenonPy.MDL

Users can interact with the search API in Python using any given query strings to obtain

a specific subset of pre-trained models. Furthermore, XenonPy offers a simple-to-use tool

chain for seamless performance of transfer learning using a selected pre-trained model. The

full list of currently available models and sample codes (for API querying, transfer learning,

and so on) is provided at https://xenonpy.readthedocs.io/en/latest/features.html#

xenonpy-mdl-and-transfer-learning. The library is ever-growing. Examples of the pre-

diction performance exhibited by the current best-performing models are shown in Figure

S1.
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Figure S1: Prediction–observation plots for current best-performing models in XenonPy.MDL. Prop-
erties of (a) small molecules, (b) polymers, and (c) inorganic compounds are ordered from left to right.
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Table S1: List of fingerprint descriptors in the rcdk and RDKit libraries that were used in
building the shotgun model library.

rcdk length RDKit length

standard 1,024 basic fingerprints 2,048
extended 1,024 atom pairs 2,048

graph 1,024 topological torsions 2,048
hybridization 1,024 Morgan fingerprints (without feature-based) 2,048

maccs 166 Morgan fingerprints (with feature-based) 2,048
estate 79

pubchem 881
kr 4,860

circular 1,024
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Figure S2: Chemical structures of the 52 polymers used in the task of predicting CP . The training
polymers were divided into six subgroups as numbered in the figure using the K-means clustering. Ex-
pert chemists annotated the identified clusters according to their compositional and structural features
as (1) hydrocarbon mainchain polymers, (2) aliphatic esters, (3) phenols ethers, (4) aromatic esters,
(5) N containing aromatics, and (6) diphenyl substituted metals. With this grouping, we performed
the stratified group 6-fold CV to evaluate the generalization capability of transferred models.
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